Tag: Numerical Modeling and Data Assimilation

Isaac Moradi smiles for the camera, wearing a red gridded button-up and a red tie

Congratulations to Isaac Moradi, Newly Elected Member of the University State Senate

ESSIC/CISESS Research Scientist Isaac Moradi has been elected to the University State Senate as one of the Professional-Track Faculty members. The University Senate, composed of faculty, staff, students, and administrators, is one of the largest and most influential governing bodies at the University of Maryland. As a member of the senate, Moradi will help advise the University President on campus policy matters and concerns, including education, budget, personnel, campus-community, long range plans, facilities, and faculty, staff and student affairs.

Read More »
Figure 1 | Flooding in July 2021 caused mass evacuation in Weihui, Henan province, in China.

Extreme Rainfall Slows the Global Economy

Xin-Zhong Liang was recently published in Nature’s “News and Views” section giving his insight on new research that reported a comprehensive assessment of changes in gross regional product (GRP) relating to excessive precipitation. The study concluded that increases in the numbers of wet days and in extreme daily rainfall dramatically reduces worldwide macroeconomic growth rates.

Read More »
Figure: Flowchart of the satellite and near space platform simulator.

Orbit Simulator for Satellite and Near Space Platforms

ESSIC/CISESS Scientists Likun Wang, Ross Hoffman and Kayo Ide have a new manuscript accepted for publication at the Journal of Atmospheric and Oceanic Technology titled “Orbit Simulator for Satellite and Near Space Platforms Supporting Observing System Simulation Experiments”.

Read More »
Isaac Moradi smiles for the camera, wearing a red gridded button-up and a red tie

Moradi is Co-I of NASA Proposal Developing A New Satellite Instrument

Traditional earth-observing microwave instruments utilize heterodyne receivers for measuring the radiance emitted by the earth and its atmosphere. These instruments which indirectly measure atmospheric temperature, water vapor, clouds, as well as surface information, have played an important role in improving the NWP weather forecasts and reanalyses, such as MERRA generated by GMAO. However, because of limitations in current microwave technologies in simultaneously processing an ultra-wide band (20-200 GHz) at high spectral resolutions, the number of channels for the current microwave instruments is very limited (e.g., 22 channels for ATMS and less for most other MW instruments).

Read More »
Figure: Total transmittance from surface to satellite (black line). The red line is the accumulated CRTM radiance Jacobian to ozone profile. Symbol “c” is the position at 331 nm used to estimate surface reflectance. The symbol “o” are the two channels, that we propose, to estimate the surface reflectance. The surface reflectance for other channels is either interpolated or extrapolated from the two reflectance at 347.6 nm and 371.8 nm.

UV Surface Reflectance from OMPS Nadir Mapper (NM) Radiance—Simulation and Assimilation

ESSIC/CISESS scientists Christopher Grassotti and Xingming Liang are co-authors in a recently published study that documents the first ultraviolet radiance assimilation for atmospheric ozone in the troposphere and stratosphere. The paper, titled “Experimental OMPS Radiance Assimilation through One-Dimensional Variational Analysis for Total Column Ozone in the Atmosphere”, was published in Remote Sensing and includes co-authors from the NOAA/NESDIS Center for Satellite Applications and Research.

Read More »