114 – Using a Cloud-resolving Model to Simulate Lightning NOx Production During the TC4 Experiment
Principal Investigator(s): K. Cummins
Lightning NOx production is the largest uncertainty related to the overall global NOx budget. Cloud-resolved chemistry simulations for observed thunderstorms can be used to make estimates of average NOx production per flash. Lightning and airborne chemistry observations are available from the Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere (SCOUT-O3) and Aerosol and Chemical Transport in Tropical Convection (ACTIVE) field campaign. Therefore, it is useful to simulate a convective event from SCOUT-O3/ACTIVE, in particular a tropical thunderstorm over the Tiwi Islands located north of Darwin, Australia, on 16 November 2005. NOx production from lightning throughout the storm duration can lead to the formation of ozone downwind of the storm anvil following storm dissipation.
Ozone production downwind of thunderstorms has a large impact on the upper tropospheric ozone budget. We will be testing the hypothesis from the literature that on average a tropical flash may make less NOx than a midlatitude flash and the application of a new lightning flash rate parameterization scheme in the Hector storm simulation.